Abstract

Herein, we describe a reductive cross-coupling of alkynes and aryl iodides by using a novel catalytic system composed of a catalytic amount of palladium dichloride and a promoter precursor, hafnocene difluoride (Cp2 HfF2 , Cp=cyclopentadienyl anion), in the presence of a mild reducing reagent, a hydrosilane, leading to a one-pot preparation of trans-alkenes. In this process, a series of coupling reactions efficiently proceeds through the following three steps: (i) an initial formation of hafnocene hydride from hafnocene difluoride and the hydrosilane, (ii) a subsequent hydrohafnation toward alkynes, and (iii) a final transmetalation of the alkenyl hafnium species to a palladium complex. This reductive coupling could be chemoselectively applied to the preparation of trans-alkenes with various functional groups, such as an alkyl group, a halogen, an ester, a nitro group, a heterocycle, a boronic ester, and an internal alkyne.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.