Abstract

PdCl 2(PPh 3) 2, in combination with an extra amount of PPh 3, is an excellent catalyst precursor for the hydrodechlorination of α-chloroacetophenone to acetophenone by hydrogen transfer from the H 2OCO system. The reaction occurs with concomitant evolution of CO 2. Under typical reaction conditions (50–70°C, 40–80 atm, substrate/Pd/P = 2000/1/50, H 2O/substrate = 8–12/1), the reaction occurs in 70–80% yield in 2 h, using ethanol or dioxane as a solvent ([Pd] = 5 · 10 −4 mol · l −1). When the catalyst precursor is employed without adding an additional amount of PPh 3 extensive decomposition to metallic palladium occurs. Also Pd C is active in promoting the hydrodechlorination reaction. As expected the reaction rate increases upon increasing concentration of catalyst, carbon monoxide pressure and temperature. The yield is slightly influenced by the concentration of the substrate. The effect of the concentration of H 2O is the most significant. In ethanol as a solvent at low concentration of water the reaction rate increases to reach a plateau above 6–7 · 10 −2 mol · l −1 of water. On the basis of the fact that it is known that (i) the precursor is reduced to a Pd(0) species by the H 2OCO system, even in the presence of hydrochloric acid, which is freed during the course of the hydrodechlorination reaction and that (ii) the starting α-chloroacetophenone oxidatively adds to Pd(0) to give Pd(CH 2COPh)Cl(PPh 3) 2 (I) and that (iii) this complex reacts with hydrochloric acid to give acetophenone and PdCl 2(PPh 3) 2 (II), it is proposed that the hydrodechlorination reaction proceeds via the intermediacy of a species analogous to complex (I) and that (II) is reduced to the Pd(0) complex through the intercation of CO and H 2O with the metal center to give a species having a Pd-(COOH) moiety, which after β-hydride abstraction gives a palladium-hydride species with concomitant evolution of CO 2. The hydride gives off a proton and reduces Pd(II) returning a Pd(0) species back to the catalytic cycle. We found also that complex (I) is reduced to a Pd(0) complex with formation of acetophenone through the action of H 2O and CO. It is proposed that this reaction, which may be at the base of a different catalytic path, occurs via the intermediacy of a species having a HPd(CH 2COPh) which, after reductive elimination of acetophenone give the Pd(0) complex starting a new catalytic cycle. In the case of the Pd C catalyzed hydrodechlorination it is suggested that H 2O and CO interacts on the surface of the metal to give a hydride and evolution of CO 2 and that this hydride displaces a chloride anion from α-chloroacetophenone absorbed on the catalytic surface to give the hydrodechlorination product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call