Abstract

AbstractLignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value‐added platform chemicals instead of using fossil‐based resources. Lignins are aromatic polymers linked by three types of ether bonds (α‐O‐4, β‐O‐4, and 4‐O‐5 linkages) and other C−C bonds. Among the ether bonds, the bond dissociation energy of the 4‐O‐5 linkage is the highest and the most challenging to cleave. To date, 4‐O‐5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross‐coupling of diaryl ether 4‐O‐5 linkage models with amines is reported, in which dual C(Ar)−O bond cleavages form valuable nitrogen‐containing derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.