Abstract

Transition metal-catalyzed hydrofunctionalization of methylenecyclopropanes (MCP) has presented a considerable challenge due to the difficult manipulation of regioselectivity and complicated reaction patterns. Herein, we report a straightforward Pd-catalyzed ring-opening hydrophosphinylation reaction of MCP via highly selective C-C bond cleavage. This allows for rapid and efficient access to a wide range of chiral allylic phosphine oxides in good yields and high enantioselectivities. Additionally, density functional theory (DFT) calculations were performed to elucidate the reaction mechanism and the origin of product enantioselectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call