Abstract
Ethylene-co-acrylic acid (E–AA) copolymers are typically produced via high-pressure free radical copolymerization and have great industrial importance because of their many applications. The radical polymerization mechanism usually leads to highly branched products with poor mechanical properties. Transition-metal-catalyzed E–AA copolymerization represents a direct and economical route to access these copolymers with potentially better control over their microstructures and material properties. However, this is highly challenging due to catalyst poisoning from both the oxygen and carboxylic acid moieties in the monomers. In this contribution, we demonstrate that a series of α-diimine-based palladium catalysts can mediate efficient copolymerizations of ethylene with AA, allylacetic acid, and 10-undecenoic acid, leading to the formation of various branched, carboxylic acid-functionalized polyolefin materials. These comonomers exist as carboxylic acid-based dimeric species at ambient temperatures, which is p...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.