Abstract

2,5-Cyclohexadienyl-substituted aryl or vinylic iodides have been reacted with carbon nucleophiles (diethyl malonate and 2-methyl-1,3-cyclohexanedione), nitrogen nucleophiles (morpholine, potassium phthalimide, N-benzyl tosylamide, di-tert-butyl iminodicarboxylate, lithium azide, and anilines), a sulfur nucleophile (sodium benzenesulfinate), and oxygen nucleophiles (lithium acetate and phenols) to afford products of cyclization and subsequent cross-coupling in good to excellent yields. In most cases, this process is highly diastereoselective. The reaction is believed to proceed via (1) oxidative addition of the aryl or vinylic iodide to Pd(0), (2) organopalladium addition to one of the carbon-carbon double bonds, (3) palladium migration along the carbon chain on the same face of the ring to form a pi-allylpalladium intermediate, and (4) nucleophilic displacement of the palladium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.