Abstract

This study presents a novel class of pseudohomogeneous catalysts (PHC) based on carbon quantum dots functionalized with terpyridine ligands (CQDs-Tpy) to immobilize and stabilize palladium nanoparticles (Pd NPs). Extensive characterization techniques clearly confirmed the successful stabilization of Pd NPs on CQDs-Tpy. The effectiveness of the catalyst was demonstrated in the selective aerobic oxidation of primary and secondary of benzylic alcohols to aldehydes in the absence of additives and phase transfer catalyst (PTC). Remarkably, the reactions predominantly yielded aldehydes without further oxidation to carboxylic acids. By employing low catalyst loadings (0.13 mol%), high conversions (up to 89%) and excellent selectivity (> 99%) of the aldehyde derivatives were achieved. Moreover, the CQDs-Tpy/Pd NPs catalyst displayed suitable catalytic activity and recyclability, offering potential economic advantages. This promising approach opens up new opportunities in the field of catalysis for designing subnanometric metal-based PHCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.