Abstract
The design and synthesis of biomolecules that are responsive to external stimuli is of great interest in various research areas, such as in the preparation of smart biomaterial and chemical biology. Polypeptide backbone disassembly as a response to a particular stimulus is of interest, as it leads to a complete loss of the protein tertiary structure and, as a result, to a loss of function. In this study, a strategy based on palladium-assisted efficient cleavage of backbone thiazolidine linkage in peptides and proteins was developed. Using a fluorescence-based assay, encompassing ubiquitinated peptide with a quenching florescence pair, it was possible to optimize the cleavage step after rapid screening of various conditions, such as the type of metal complexes and reaction additives. The optimized conditions prompted fast cleavage of the thiazolidine linkage. The straightforward introduction of a backbone thiazolidine linkage in peptide and proteins coupled with the chemical methods used offers new opportunities in controlling macromolecule function and might, with the aid of cellular protein delivery methods, be applied in cellular settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.