Abstract

Magnetic thin films such as Permalloy (Py) have been extensively used as core material in integrated power magnetic components (micro-inductors and transformers) for their excellent soft magnetic properties. Existing core electrodeposition technology requires sputtered permalloy seed layer. This seed layer etches slowly compared to the electroplated core during magnetic core patterning. In this work, a new electroless deposition process has been developed where samples are activated by palladium to realize a thin catalytic layer on SiO2. Up to 1μm thick permalloy (∼22% ±3% Fe and ∼78%±3% Ni) is deposited from an in-house developed borane based bath to achieve ∼ 30-35μOhm-cm resistivities. The magnetic properties of permalloy deposits reveal distinct hysteresis loop with coercivity (∼4.5Oe). The electroless permalloy over-etch (12μm) compared with sputtered permalloy seed is found to be negligible (2μm). This demonstrates the applicability of permalloy electroless deposition as a seed for high yield batch fabrication of magnetics on silicon devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.