Abstract

A family of novel adenovirus type 5-simian virus 40 (Ad5-SV40) recombinants (Ad5++D1) whose genomes consist of symmetrically inverted structures was isolated. Particles of Ad5++D1 could contain one of several recombinant genomes that differed incrementally from one another by a full-length copy of linear SV40 DNA. The members of the Ad5++D1 family appeared to be in genetic equilibrium with one another. In all probability this equilibrium was maintained by homologous recombination, resulting in the loss or gain of one or two unit length copies of the SV40 genome. The genome of the most abundant recombinant from consisted of a giant inverted repeat which was some 35,000 nucleotide pairs in length. Beginning from one end, the recombinant genome consisted of 3,534 nucleotides derived from the left end of the adenovirus type 5 genome; these nucleotides were joined to 2.7 copies of SV40 DNA arranged as head-to-tail tandems. This entire structure was then repeated in the opposite orientation, thereby forming a large inverted repeat whose structure was Ad5-SV40-SV40-04VS-04VS-5dA. The population of hybrid genomes was stable and was maintained through serial rounds of infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call