Abstract

AbstractThe variations in source rocks and melting conditions of granites can provide essential clues for the crustal magmatic response in orogenic process. Based on geochronology, whole‐rock and mineral chemistry, this paper reveals two different granites in the Northern Qinling migmatite complex, which reveal obvious differences in source region and melting condition. The older granodiorite (402 ± 0.8 Ma) displays typical Na‐rich adakite affinity, i.e., high Na2O/K2O (2.04 to 2.64) and Sr/Y (96 to 117) ratios, they have relative evolved isotopic compositions (εNd(t) = –0.52 to –0.04; zircon εHf(t) = –0.06 to +7.78). The younger leucogranite (371 ± 2 Ma) displays higher SiO2 (72.32 to 73.45 wt%), lower (TFeO + MgO + CaO + TiO2) contents (<2 wt%) and depleted Sr‐Nd‐Hf isotopic compositions (i.e., εNd(t) = +2.6 to +3.0; zircon εHf(t) = +5.94 to +14.12), as well as high 10000 × Ga/Al and TFeO/MgO ratios, indicating that they represent highly fractionated I‐type granites that derived from melting of juvenile crust. The variations in source rocks and melting condition of the two granites indicating a tectonic switch from compression to extension in 400 to 370 Ma, this switch is later than that in the eastern section of the North Qinling, indicating a scissor collision process between the South Qinling and North China Craton (NCC) in Devonian era.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.