Abstract

We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trebol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.