Abstract

Phosphatized Mn and Fe rich hardgrounds and condensed pelagic deposits in carbonate platform successions are precious archives of abrupt climate and environmental changes (redox conditions and phosphorous availability) in the past shallow-water marine environment. While numerous examples have been documented in the Cretaceous successions of the Northern Tethys, the scarcity of similar descriptions from the southern margins suggests differences in sedimentary processes or preservation conditions.In this work we study three phosphatized Mn and Fe rich hardgrounds and pelagic condensed deposits that mark the repetitive demise of the Panormide carbonate platform developed in the Southern Tethyan margin during the Cretaceous. The integration of SEM-EDS, PXRD, and Micro-Raman spectroscopy data shows that these hardgrounds consist of fine-grained Fe (goethite and hematite) and Mn (birnessite and/or vernadite) oxides dispersed in a calcite and apatite matrix. Micro-Raman spectroscopy shows the presence of oxidized Mn species: Mn3+ and Mn4+. The oxidation of Mn2+ → Mn3+/4+ and/or Fe2+ → Fe3+ occurred at the sediment-seawater interface under oxic conditions (where both Mn and Fe oxidize) or suboxic conditions (where only Fe oxidizes). The paleoenvironmental perturbations that triggered the formation of both hardgrounds and condensed pelagic deposits were likely related to pCO2 cycle, upwelling of P-Mn-Fe-rich water masses, eutrophication and phosphatization related to the Cretaceous climate oscillations during the main Oceanic Anoxic Events. These perturbations were likely enhanced by tectonic activity. Moreover, we show that the formation of the phosphatized metals-rich hardgrounds and the recovery of shallow-water sedimentation occurred after long-term periods (6–12 Ma). Thus, the Panormide serves as a remarkable example of resilience amidst significant climatic changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.