Abstract

Paleo-reconstructed hydrologic records offer the potential to evaluate water resources system performance under conditions that may be more extreme than seen in the historical record. This study uses a stochastic simulation framework consisting of a non-homogeneous Markov chain model (NHMM) to simulate the climate state using Palmer Drought Severity Index (PDSI)-reconstructed data, and K-nearest neighbor (K-NN) to resample observational net basin supply magnitudes for the Great Lakes of North America. The method was applied to generate 500 plausible simulations, each with 100 years of monthly net basin supply for the Upper Great Lakes, to place the observed data into a longer temporal context. The range of net basin supply sequences represents what may have occurred in the past 1,000 years and which can occur in future. The approach was used in evaluation of operational plans for regulation of Lake Superior outflows with implications for lake levels of Superior, Michigan, Huron and Erie, and their interconnecting rivers. The simulations generally preserved the statistics of the observed record while providing new variability statistics. The framework produced a variety of high and low net basin supply sequences that provide a broader estimate of the likelihood of extreme lake levels and their persistence than with the historical record. The method does not rely on parametrically generated net basin supply values unlike parametric stochastic simulation techniques, yet still generates new variability through the incorporation of the paleo-record. The process described here generated new scenarios that are plausible based on the paleo and historic record. The evaluation of Upper Great Lakes regulation plans, subject to these scenarios, was used to evaluate robustness of the regulation plans. While the uncertain future climate cannot be predicted, one can evaluate system performance on a wide range of plausible climate scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.