Abstract

AbstractWe present stable isotope and geochemical data from four sediment cores from west of Prins Karls Forland (ca. 340 m water depth), offshore western Svalbard, recovered from close to sites of active methane seepage, as well as from shallower water depths where methane seepage is not presently observed. Our analyses provide insight into the record of methane seepage in an area where ongoing ocean warming may be fueling the destabilization of shallow methane hydrate. The δ13C values of benthic and planktonic foraminifera at the methane seep sites show distinct intervals with negative values (as low as −27.8‰) that do not coincide with the present‐day depth of the sulfate methane transition zone (SMTZ). These intervals are interpreted to record long‐term fluctuations in methane release at the present‐day landward limit of the gas hydrate stability zone (GHSZ). Shifts in the radiocarbon ages obtained from planktonic foraminifera toward older values are related to methane‐derived authigenic carbonate overgrowths of the foraminiferal tests, and prevent us from establishing the chronology of seepage events. At shallower water depths, where seepage is not presently observed, no record of past methane seepage is recorded in foraminifera from sediments spanning the last 14 ka cal BP (14C‐AMS dating). δ13C values of foraminiferal carbonate tests appear to be much more sensitive to methane seepage than other sediment parameters. By providing nucleation sites for authigenic carbonate precipitation, foraminifera thus record the position of even a transiently stable SMTZ, which is likely to be a characteristic of temporally variable methane fluxes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call