Abstract

A paleomagnetic study of 14 sites in the baked sedimentary rocks of the Newark basin Passaic Formation in southeastern Pennsylvania reveals two types of magnetic behavior. Dark gray‐colored, baked sedimentary rocks have peak unblocking temperatures of 640°C, high magnetic intensities, and shallow, normal polarity, northeasterly directions. Light gray‐colored rocks have peak unblocking temperatures of less than 580°C, low magnetic intensities, and intermediate inclination, normal polarity, northwesterly directions. The low unblocking temperature magnetizations are secondary magnetizations which have declinations similar to but are shallower than the B remagnetization observed by Witte and Kent (1991) throughout the Newark basin. The discrepancy may be due to “underprinting” by an unresolved primary magnetization. The low unblocking temperature magnetization was probably acquired by growth of secondary magnetite during a hydrothermal event, as postulated by Sutter (1988), based on geochronologic data. The high unblocking temperature magnetization is significantly prefolding. Both the low‐peak unblocking temperature magnetization and the high‐peak unblocking temperature magnetization suggest a 15° counterclockwise block rotation of the Sassamansville syncline. If this rotation is removed from the high unblocking temperature sites collected around the fold, a stronger passage of the fold test results. Six sites were also collected from baked sediments and one site from diabase in northern Virginia's Culpeper basin, since Sutter's geochronological work indicated that the intrusives in the Culpeper basin are coeval to the Newark basin intrusives. Virtual geomagnetic poles (VGPs), based on the tilt‐corrected, high‐temperature Newark basin magnetizations, were compared with the VGPs calculated from the site means of a high‐temperature magnetization isolated from baked sedimentary rocks in the Culpeper basin and to the magnetizations reported by Raymond (1982) from dikes and sills. In this comparison the in situ Culpeper poles agreed with the prefolding Newark poles significantly better than the prefolding Culpeper poles. This result indicates that Culpeper intrusives erupted into already tilted sedimentary rocks. The paleomagnetic pole determined from the combined Culpeper baked sediments, dikes, and sills (in situ coordinates) and the Newark basin baked sediments (tilt‐corrected coordinates) lies at 60°N, 69°E and is of 201 Ma age. This latest Triassic/earliest Jurassic pole, when combined with the Newark basin Carnian results (Witte and Kent, 1989) and Norian results (Witte et al., 1991) corrected for a counterclockwise block rotation (Kodama et al., 1994), provides a record of significant polar wander from eastern North America's Mesozoic basins for the Late Triassic. This is consistent with observations made for a similar time period from rocks on the Colorado Plateau (Bazard and Butler, 1991). Comparison of the Newark/Culpeper pole to similar age poles from the Kayenta (Bazard and Butler, 1991) and Moenave Formations (Ekstrand and Butler, 1989) only requires small amounts (5°) of Colorado Plateau rotation. The pole also provides the first well‐dated evidence of the Jl cusp in North American apparent polar wander from rocks not located on the Colorado Plateau, thus giving strong support for the usefulness of paleomagnetic Euler pole analysis of apparent polar wander.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.