Abstract

In the past few years, a wealth of paleomagnetic data gathered from Neogene sediments consistently showed that since ca. 10 Ma the Calabria terrane coherently drifted ~500 km ESE-ward from the Sardinian margin, and rotated 15°–20° clockwise (CW) as a rigid microplate between 2 and 1 Ma. Here we report on a high-resolution paleomagnetic investigation of the Crotone forearc basin of northern Calabria. The integrated calcareous plankton biostratigraphy indicates early Pliocene (Zanclean) to late early Pleistocene (Calabrian) ages for 29 successful paleomagnetic sites and/or sections. Unexpectedly, four domains undergoing distinct rotations are documented. Two blocks have undergone a CW rotation statistically undistinguishable, for both timing and magnitude, from the rigid Calabria rotation documented in the past. Two additional ~10-km-wide blocks yielded a 30.8° ± 22.5° and 32.0° ± 9.2° post–1.2 Ma counterclockwise rotation, likely due to left-lateral shear along two NW-SE fault zones. We infer that since advanced early Pleistocene times, after the end of the uniform CW rotation, left-lateral strike-slip tectonics disrupted the Calabria terrane, overwhelming a widespread extensional regime accompanying the Calabria drift since late Miocene times. Seismological evidence reveals that only the southern part of the Ionian slab subducting below Calabria is continuous, while beneath northern Calabria a slab window between 100 and 200 km depth is apparent. We suggest that the partial breakoff of the Ionian slab after 1 Ma induced the fragmentation of the Calabria wedge, and that strike-slip faults from the Crotone basin decoupled “inactive” northern Calabria from southern Calabria, still drifting towards the trench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call