Abstract
Integrated data of calcareous plankton and benthic foraminifers from the pre-evaporitic interval of Trave section (Central Italy) allowed the reconstruction of surface and bottom-water conditions in the Central Mediterranean during the interval from 7.61 to 6.33 Ma, preceding the Messinian Salinity Crisis. Our data point out a three-step paleoenvironmental evolution. During the first stage (7.61–7.02 Ma) benthic foraminiferal assemblages depict stable, well-oxygenated and ventilated bottom-water conditions, while the surface water records variable temperature and high nutrient conditions, probably associated with strong seasonality. The second stage (7.02–6.70 Ma) points to unfavourable bottom-water condition, triggered by deep-sea stagnation. This is witnessed by a significant decrease in oxygen concentration and biotic diversity, and by the presence of stress-tolerant taxa. A general warming of the surface water and a strongly stratified water column, characterized by an expanded mixed layer, are also recorded. From 6.70 Ma onwards (third stage), a prominent change to more restricted, low-oxygenated, hypersaline conditions at the sea floor is testified by the total disappearance of deep-dwelling planktonic foraminifers and the increasing abundance of stress-tolerant species. Calcareous plankton reflects high instability of the surface water in terms of nutrients, temperature and salinity. During this stage the environmental deterioration reaches intermediate depths in the water column. The initial change toward a step-wise isolation of the Central Mediterranean bottom-waters is probably related to a general warming, responsible for a first slowing-down of the vertical circulation, favouring stratification of surface and intermediate waters and stagnation of bottom-waters. This warming is related to the restricted connection between the Mediterranean Sea and the Atlantic Ocean, which occurred since 7.146 Ma. In the Trave section, the isolation of bottom-waters most likely occurred at the same time as in other Mediterranean sections. However, due to the presence of a hiatus it cannot be excluded that it occurred with a delay of ~ 100 kyr, probably related to the shallower paleodepth of the basin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.