Abstract

Two distal Cretaceous–Paleogene (K/Pg) boundary sections in the Central Apennine region (Italy) have been studied: Bottaccione Gorge and Contessa Highway. Geochemical and carbon isotope analyses on the infilling of trace fossils and on the host sedimentary rocks were performed to determine paleoenvironmental conditions during the Cretaceous–Paleogene transition. Major and trace element contents were measured in a 63 cm-thick interval at Bottaccione Gorge (from 22 cm below to 41 cm above the K/Pg boundary) and in a 72 cm-thick interval at Contessa Highway (from 43 cm below to 29 cm above the K/Pg boundary). Even though the K/Pg ejecta layer is now depleted at these sections due to continuous oversampling, the uppermost Maastrichtian and lowermost Danian deposits record the paleoenvironmental conditions prior to and after the K/Pg event. We used redox-sensitive element ratios (V/Al, Cr/Al, Co/Al, Ni/Al Cu/Al, Zn/Al, Mo/Al Pb/Al and U/Mo) and detrital element ratios (K/Al, Rb/Al, Zr/Al and ƩREE/Al) as proxies of certain environmental parameters, used for paleoenvironmental reconstruction. In general, similar values for elemental ratios are registered within Maastrichtian and Danian deposits, which supports similar paleoenvironmental conditions prior to and after the K/Pg event as well as the rapid reestablishment of the pre-impact conditions (i.e., oxygenation, nutrient availability, and/or sedimentary input). An enrichment in certain redox-sensitive elements above the K/Pg at the Bottaccione Gorge section suggests lower oxygenation, as also evidenced by the tracemaker community. Carbon isotope composition data from the infilling material of trace fossils furthermore reveals values similar to those of the host rocks at the corresponding depth, which supports an active infilling by nearly contemporaneous bioturbation during sediment deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.