Abstract

Mid-latitude arid central Asia (ACA) is one of the driest regions in the world and is a key source area of global atmospheric dust. Loess records of paleoclimatic changes in ACA are complex and interpretations are problematic due primarily to the lack of robust chronologies. Quartz OSL and K-feldspar pIRIR dating methods were employed to date 8 quartz and 30 K-feldspar samples from a 30 m loess sequence (BYH10 section) on the northern slope of the Tianshan Mountains, central ACA, northwest China. The reliability of quartz and K-feldspar ages was monitored by internal checks of luminescence characteristics and by comparison of the quartz and K-feldspar ages. The section lithology, proxy indexes of grain size and magnetic susceptibility, and the high resolution OSL chronology together indicate: (1) Quartz OSL dating can be used to date ACA loess samples less than 40 ka, while K-feldspar pIRIR dating is reliable for loess samples at least as old as ∼150 ka from ACA; (2) Aeolian loess began to be deposited on the northern slope of Tianshan Mountains beginning at least ∼145 ka ago, and was deposited primarily during the penultimate and last glaciation periods; (3) Rapid loess deposition occurred during MIS 6, MIS 4 to early-mid MIS 3, and MIS 2, but little or no loess deposition occurred during MIS 5, MIS 3a and MIS 1; (4) This loess depositional sequence is comparable to previously published stalagmite growth records in the region on glacial-interglacial cycles. Rapid dust deposition and lack of stalagmite growth during glacials, and lack of loess deposition and stalagmite growth during interglacials, indicate a climatic pattern of wet-warm (interglacial) and dry-cold (glacial) climatic regimes on orbital cycles in ACA; (5) Variation in the loess deposition rates in ACA was much larger than in the central loess plateau during the last glaciation; (6) Depositional hiatuses of >50 kyr occur in ACA loess sequences, and high resolution chronologies are needed when reconstructing past climatic changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call