Abstract

The influence of the Indian summer monsoon (ISM) and mid-latitude westerlies on the central Tibetan Plateau (TP) during the Holocene, particularly during the mid-Holocene, is still unclear, limiting our understanding of past climate change in this region. Cuona Lake, located on the central TP, is a transitional zone of atmospheric circulation that is well situated for investigations on the interplay between the ISM and mid-latitude westerlies. In this study, multiple proxies of lacustrine sediments from Cuona Lake were measured, including total organic carbon (TOC), total nitrogen (TN), δ13Corg, n-alkanes, and their hydrogen isotopes, to reconstruct the evolution of climate on the central TP over the past 13 cal kyr BP. Decreased TOC/TN ratios, dominant short-chain n-alkanes/alkanoic acid C15/16/17, and lower values of n-alkane indicator ratios (carbon preference index and average chain length) throughout the investigated period suggest that the organic matter of the lake essentially originated from aquatic algae, and was weakly affected by terrestrial input. The historic variations in the δD, TOC, and δ13Corg values revealed cold-wet conditions during 12.4–11.4 cal kyr BP, warm-wettest environments during the early Holocene (from 11.4 to 8.2 cal kyr BP), cool-wet conditions in the mid-late Holocene (from 5 to 3 cal kyr BP), and warm-dry conditions since 3 cal kyr BP. The reconstructed climatic variability in the Cuona area agrees well with previous indexes in south-central TP, indicating that the climatic pattern of the studied area is basically controlled by the monsoonal circulation from the late part of the last deglaciation to the early Holocene, with the ISM reaching the north-central TP at ∼11 cal kyr BP. During the mid-late Holocene, the humid conditions coincided with an enhanced influence of westerlies, providing strong evidence for the contribution of westerlies-delivered moisture to the central TP. Based on a comparison of paleoclimate records, the Cuona region displays a transitional phase between monsoon circulation and westerly jets during the Holocene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.