Abstract
We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic–earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 (“APT5L”; middle–late Norian), Middle APT5 (“APT5M”; Rhaetian), and Upper APT5 (“APT5U”; Hettangian–earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent to APT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Deposition of ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187 Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian–early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180 Ma during the early Toarcian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.