Abstract

Subantarctic Parkland and Subantarctic–North Patagonian Evergreen Forest, embracing >40,000 14 C years of middle and late Llanquihue glaciation, are reconstructed from pollen contained in multiple interdrift deposits and cores of lake sediments. The subantarctic plant communities at low elevations have since been replaced by temperate Valdivian Evergreen Forest. Data in support of the vegetation reconstruction derive from close‐interval sampling (>1400 pollen analysed stratigraphic levels) and high‐resolution chronology (>200 AMS and conventional radiocarbon‐dated horizons). Pollen sequences are from 15 sites, eight of which are exposures and seven mires, located in relation to lobes of piedmont glaciers that occupied Lago Llanquihue, Seno Reloncav', Golfo de Ancud, and the east‐central sector of Isla Grande de Chiloí at the northern limit of the Golfo Corcovado lobe.Recurring episodes of grass maxima representing Subantarctic Parkland, when grass and scrub became widespread among patches of southern beech (Nothofagus), bear a relationship to glacial advances. The implication of the maxima, prominent with advances at 22,400 and 14,800 14C yr BP during late Llanquihue glaciation in marine oxygen‐isotope Stage 2, is of successive intervals of cold climate with summer temperatures estimated at 6–8°C below the modern mean. The earliest recorded maximum at >50,000 14C yr BP is possibly during late Stage 4. At the time of middle Llanquihue glaciation in Stage 3, cool, humid interstades on Isla Grande de Chiloé with Subantarctic Evergreen Forest, which under progressive cooling after 47,000 14C yr BP was increasingly replaced by parkland. During stepwise deglaciation, when transitional beech woodland communities supplanting parkland became diversified by formation of thermophilous North Patagonian Evergreen Forest, warming in the order of 5–6°C was abrupt after 14,000 14C yr BP. Closed‐canopy North Patagonian Evergreen Forest was established by 12,500 14C yr BP. Later, after c. 12,000 until 10,000 14C yr BP, depending on location, forest at low elevations became modified by expansion of a cold‐tolerant element indicative of ≥2–3°C cooler climate. This stepwise climatic sequence is seen at all late‐glacial sites.Cool, humid interstadial conditions, punctuated by cold stadial climate, are characteristic of the last ≥40,000 14C years of the Pleistocene at midlatitude in the Southern Hemisphere. Pollen sequences from southern South America and terrestrial–marine records from the New Zealand–Tasmania sector express a broad measure of synchrony of vegetational/climatic change for marine oxygen‐isotope Stages 2–3. The data, combined with the timing of glacial maxima in the Southern Andes, Southern Alps of New Zealand, and in the Northern Hemisphere, are indicative of synchronous, millennial‐scale, midlatitude climatic changes in the polar hemispheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.