Abstract

At least 180 small spore species assignable to 62 miospore genera have been identified from the Middle Pennsylvanian Hernshaw coal bed in southern West Virginia, and its stratigraphic equivalent, the Fire Clay coal bed, in eastern Kentucky. The established natural affinities of a majority of these miospore taxa indicate that the Hernshaw-Fire Clay peat swamp supported a diverse flora consisting of arborescent and “herbaceous” lycopods, ferns (tree-like and small varities), calamities and cordaites. Four floral groupings are recognized in the Hernshaw-Fire Clay coal bed. The inferred paleoecology and vertical stratification of each of these four floral groupings is similar in structure to the “phasic” floral communities found in modern domed peat systems, suggesting that the ancient Hernshaw-Fire Clay peat swamp was a domed deposit. Compositional characteristics (petrographic make up, ash yield and sulfur content) associated with the four groupings are consistent with, and support this interpretation. Where uninterrupted by inorganic partings, the Hernshaw-Fire Clay coal bed commonly contains basal coal layers dominated by Lycospora-bearing arborescent lycopods, with successive increments showing a progression to a more fern- and “herbaceous”-lycopod-dominant flora in younger layers. These observations are corroborated by petrographic analyses, which show the bed to be compositionally stratified. Increments dominated by Lycospora have high vitrinite contents, in contrast to increments containing increased percentages of fern- and “herbaceous”-lycopod-affiliated taxa that are enriched in inertinite macerals. The volcanic ash fall, preserved as the flint-clay parting in the Hernshaw-Fire Clay coal bed, had a considerable effect on the development of the ancient Hernshaw-Fire Clay peat swamp. Besides interrupting peat formation, the presence of an inorganic substrate represent a major change in edaphic conditions within the swamp. This disruption is demonstrated by a change in palynflora and by the establishment and proliferation of some plant groups, notably cordaites and calamites, that may have been better adapted to growth on mineral soils. These palynologic and petrographic relationships, thought to be indicative of a domed peat-swamp origin, are not confined to the Hernshaw-Fire Clay coal bed, but appear to be characteristic of many coal beds in the Appalachian basin, and also of coal beds in other basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call