Abstract

Abstract Sedimentologic and petrographic analyses of outcroping and subsurface calcretes, palustrine carbonates, and silcretes were carried out in the southern Parana Basin (Uruguay). The aim of this work is to describe the microfabric and interpret the genesis of these rocks through detailed analyses, since they contain significant paleoenvironmental and paleoclimatic evolution information. The main calcrete and silcrete host rock (Mercedes Formation) is represented by a fluvial thinning upward succession of conglomerate and sandstone deposits, with isolated pelitic intervals and paleosoils. Most of the studied calcretes are macroscopically massive with micromorphological features of alpha fabric, originated by displacive growth of calcite in the host clastic material due to evaporation, evapotranspiration and degassing. Micromorphologically, calcretes indicate an origin in the vadose and phreatic diagenetic environments. Micrite is the principal component, and speaks of rapid precipitation in the vadose zone from supersaturated solutions. The abundance of microsparite and secondary sparite is regarded as the result of dissolution and reprecipitation processes. Although present, brecciated calcretes are less common. They are frequent in vadose diagenetic environments, where the alternation between cementation and non-tectonic fracturing conditions take place. These processes generated episodes of fragmentation, brecciation and cementation. Fissures are filled with clear primary sparitic calcite, formed by precipitation of extremely supersaturated solutions in a phreatic diagenetic environment. The micromorphological characteristics indicate that calcretes resulted from carbonate precipitation in the upper part of the groundwater table and the vadose zone, continuously nourished by lateral migration of groundwater. The scarcity of biogenic structures suggests that they were either formed in zones of little biological activity or that the overimposed processes related to water table fluctuations produced intense recrystallization completely obliterating the biogenic fabric. Limestone beds containing terrestrial gastropods are geographically restricted. Situated at the top of the calcrete successions, they exhibit brecciated and peloidal-intraclastic textures but lack lamination, edaphic structures, aggregates and vertical rhizoliths. This indicates they correspond to low-energy palustrine deposits, generated in shallow, local and ephemeral ponds developed in topographic depressions. When water table levels dropped, the palustrine deposits were exposed. This favours the presence of terrestrial gastropods, seeds and insect nests. The combination of calcretes and palustrine carbonates indicates periods and areas with a reduced clastic input and a predominantly semiarid climate, with well-defined humid and dry seasons. Characteristics of the later developed massive and nodular horizons of silcretes, such as, preservation of the internal structure of the host rock, the small areal extent, the formation of massive lenses, the complex pore infillings and the lack of a columnar upper section, indicate that they were generated from groundwaters. Every silcretized horizon shows different positions of the groundwater table and relates to the dissection of landscape. The age of calcretization and silcretization is bracketed between the Late Cretaceous (Campanian–Maastrichtian) and the Early Eocene. Paleoclimate indicates changing conditions from warm and humid at the end of the Cretaceous (Mercedes Formation) to semiarid and seasonal during Paleocene (groundwater calcretes and palustrine deposits) and subtropical and seasonal in the early Eocene (Asencio Formation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call