Abstract
Surface and deep water circulation patterns in the eastern Indian Ocean during the Paleocene Epoch are inferred based on an integrated magnetobiostratigraphic and stable isotope investigation of Ocean Drilling Program Hole 761B, drilled on the Wombat Plateau. A combination of magnetostratigraphy, biostratigraphy and isotope stratigraphy demonstrates that numerous deep sea sites that have been considered to show continuous, or nearly continuous sedimentation through the Paleocene are punctuated by a series of hiatuses, some of which exceeding a duration of 1 Myr. Therefore, our study is based on a detailed temporal interpretation of the stratigraphic successions we used for paleoceanographic reconstructions. We compare detailed planktonic and benthic foraminiferal carbon and oxygen isotope records from Hole 761B with several temporally correlative records published from different oceanic provinces in order to distinguish between local and global patterns within the eastern Indian Ocean. Although Site 761 was situated at low latitudes during the Paleocene, its surface waters were predominantly influenced by circulation originating from the Southern Ocean as indicated by inferred cool sea surface temperatures and reduced surface to deep water temperature gradients. We suggest that deep waters in the eastern Indian Ocean were not directly fed by the Southern or Tethys Oceans. Rather, the more negative δ 13C composition of the bottom waters recorded by benthic foraminifera implies the presence and/or active contribution of aged deep waters from the Pacific during this time, at least prior to ∼60.2 Ma and subsequent to ∼59.0 Ma. The Indian continent, Ninetyeast Ridge, Kerguelen Plateau and Broken Ridge may have played a significant role as submarine barriers to deep water circulation during the Paleocene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.