Abstract

ABSTRACTSedimentary structures unique to tidally influenced environments and unambiguously salinity-stressed marine ichnofossil assemblages in the lower Paleocene Ferris and upper Paleocene Hanna formations of Wyoming's Hanna Basin (HB) necessitate major revision of local and regional reconstructions of the Paleocene Western Interior Seaway (WIS). Preserved in sandy estuarine bars, sandy tidal flats, heterolithic distributary channels, bayhead delta, and flood-tide-delta deposits similar those in the modern Trinity River, its bayhead delta, and the San Luis Pass flood-tidal delta on the Texas coast, these these assemblages include Arenicolites, Bergaueria, Fuersichnus, Gyrochorte, Ophiomorpha, Palaeophycus, Planolites, Psilonichnus, Rhizocorallium, Rosselia, Siphonichnus, Skolithos, Spongeliomorpha, Taenidium, Thalassinoides, and tetrapod tracks. Mapping an ∼ 325-m-thick succession of lower Paleocene strata (65 to 63 Ma) around the western HB reveals a series of marine flooding events, each followed by coal accumulation. A similar, 170-m-thick succession of interfingering coastal-plain and restricted-marine strata occurs in the upper Paleocene (58.5 Ma) Hanna Formation, following accumulation of lacustrine and floodplain deposits and an episode of major gravel and cobble progradation from 62 to 60 Ma. These younger ichnofossils record the final major transgression of the WIS and have major implications for the depositional environment of the time-equivalent Waltman Shale in the Wind River Basin to the north and for sediment routing to the Gulf Coast Wilcox sands. Ichnofossils are an underutilized source of physicochemical proxy data that are lifting the veil from the cryptic Paleocene transgressions of the WIS that have for so long remained undetected because of the absence of open-marine body fossils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call