Abstract

ABSTRACTThe Middle Ordovician Kelimoli Formation carbonate reservoirs in the northern Tianhuan area, Ordos Basin, China are main exploration targets. Subsurface core samples, logging, drilling and production data from the area were used to characterise the carbonate reservoir and to construct a genetic model for exploration. The sedimentary facies identified include trough–continental rise, upper–lower slope, platform margin reef-shoal, open platform and evaporation-restricted platform. The slope and platform margin facies are potential zones for high-quality reservoirs. Porosity in the study area comprises intergrain, intercrystal, intragrain and intracrystal pores, fractures and vughs. The Sr/Ba (0.40–4.87) and V/(V + Ni) (0.64–0.97) ratios indicate deposition in a brackish water-dominated environment under reducing conditions, associated with sea-level fluctuations during the deposition of the Kelimoli Formation. The Sr/Ba, V/(V + Ni), 87Sr/86Sr ratios, δ18O values and crystal texture of dolomite samples suggest that meteoric water was involved in the diagenetic fluid in the near-surface depositional environment. Isotopes (δ13C and δ18O) and trace elements (Fe and Mn) allowed the identification of seepage-reflux and mixed-water dolomitisation. The crystal textures of the samples consist of micritic, bioclastic and reefal limestones, and dolomite with gypsum, which were easily dissolved during the early diagenetic stage. The epidiagenetic stage was the key period for the development of high-quality reservoirs because of large-scale bedding-parallel karstification from meteoric water. The reservoir zones, dominated by partially filled and unfilled vughs, and fractures, are favourable exploration targets in the northern Tianhuan area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.