Abstract

Many tasks executed in dynamic distributed systems, such as sensor networks or enterprise environments with bring-your-own-device policy, require central coordination by a leader node. In the past it has been proven that distributed leader election in dynamic environments with constant changes and asynchronous communication is not possible. Thus, state-of-the-art leader election algorithms are not applicable in asynchronous environments with constant network changes. Some algorithms converge only after the network stabilizes (an unrealistic requirement in many dynamic environments). Other algorithms reach consensus in the presence of network changes but require a global clock or some level of communication synchrony. Determining the weakest assumptions, under which bounded leader election is possible, remains an unresolved problem. In this study we present a leader election algorithm that operates in the presence of changes and under weak (realistic) assumptions regarding message delays and regarding the clock drifts of the distributed nodes. The proposed algorithm is self-sufficient, easy to implement and can be extended to support multiple regions, self-stabilization, and mobile ad-hoc networks. We prove the algorithm's correctness and provide a complexity analysis of the time, space, and number of messages required to elect a leader.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.