Abstract

Next Generation Sequencing (NGS) has unlocked access to the wide range of non-cultivable microorganisms, including those present in the ancient past. The study of microorganisms from ancient sources (palaeomicrobiology) using DNA sequencing now provides a unique opportunity to examine ancient microbial genomic content, explore pathogenicity, and understand microbial evolution in greater detail than ever before. As a result, current studies have focused on reconstructing the evolutionary history of a number of human pathogens involved in ancient and historic pandemic events. These studies have opened the door for a variety of future palaeomicrobiology studies, which can focus on commensal microorganisms, species from non-human hosts, information from host-genomics, and the use of bacteria as proxies for additional information about past human health, behavior, migration, and culture. Here, we describe the origin and the historical and recent advances in the field of palaeomicrobiology, review some of the most notable ancient pathogenic microorganism studies, and provide perspectives on how NGS and whole genome information from ancient microorganisms contribute to our understanding of bacterial evolution on a broader scale. We conclude by exploring the application of newly developed tools in palaeomicrobiology and discussing how future studies can improve our current understanding of the co-evolution relationships between humans and non-pathogenic microbes.

Highlights

  • The advancement of DNA sequencing technologies has expanded significantly our understanding of the biology and evolution of microorganisms and drastically added to the body of literature using classical microbiological methodologies

  • The ability to interrogate a mixture of genetic material from all of the microorganisms present in a sample using metagenomic approaches has resulted in renewed interest and significant technical and analytical advances in the palaeomicrobiology field (Adler et al, 2013; Warinner et al, 2014; Harkins and Stone, 2015)

  • By comparing ancient and modern microorganisms, researchers have reconstructed the evolutionary history of several pathogens over extensive timescales and traced specific genomic changes that are linked to past diseases and epidemics (Anastasiou and Mitchell, 2013; Harkins and Stone, 2015; Bos et al, 2019)

Read more

Summary

Introduction

The advancement of DNA sequencing technologies has expanded significantly our understanding of the biology and evolution of microorganisms and drastically added to the body of literature using classical microbiological methodologies (culture-based assays, in vitro studies, microscopy, etc.). The use of ancient DNA (aDNA) sequencing in palaeomicrobiology – the study of ancient microorganisms – emerged with a focus on diagnosing and characterizing the pathogenic agents from past human pandemics using novel molecular techniques, such as hybridization enrichment and shotgun sequencing (Drancourt and Raoult, 2005). Spigelman and Lemma (1993) were able to use PCR to identify the presence of Mycobacterium tuberculosis DNA sequences in bone remains for the first time, allowing them to confirm the suspected diagnoses in ancient samples.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.