Abstract

SUMMARY New palaeomagnetic data from the central and western sectors of the Trans-Mexican volcanic belt (TMVB) are presented and analysed for palaeosecular variation (PSV) and tectonic rotations. Fifty-one sites with geochronological control were collected from selected volcanic lava flows, which cover the temporal and spatial activity in the magmatic arc for the past ∼11 Ma. Rock magnetic experiments reveal that generally Ti-poor titanomagnetites, sometimes maghemitized, are the magnetic carriers of the characteristic remanent magnetizations. After analysis of detailed progressive demagnetization data, 47 mean-site directions are determined. In addition, data from previous regional palaeomagnetic study in the eastern TMVB sector (53 sites) are re-analysed. Palaeomagnetic data are grouped according to geographic distribution (three structural sectors) and according to age (late Miocene, Pliocene or Quaternary). To avoid discarding tectonic effects, the less stringent criterion (i.e. a fixed cut-off angle to the mean equal to 45°) was applied to identify transitional data, affecting four sites. Palaeomagnetic results, backed by positive reversal tests, indicate no palaeomagnetically detectable vertical-axis block rotations in the study areas. The nearly geocentric axial dipole (GAD) inclinations suggest no significant tilting effects and negligible quadrupolar contributions. Since the mean palaeomagnetic directions for the study areas do not differ from reference directions from the North American polar wander path, two data sets for 11–5 and 5–0 Ma are tested for geomagnetic purposes. Virtual geomagnetic poles (VGPs) were selected using both fixed −45°- and optimum, variable cut-off angles. This resulted in VGP dispersions that increase back on time and are consistent with those obtained from globally distributed observations at the site latitude for their respective age ranges and cut-off criteria. Palaeomagnetic data from late Miocene and Pliocene TMVB rocks can be considered in the databases for time averaged field (TAF) and palaeosecular variation from lavas (PSVL) analyses and geomagnetic field geometry characterization during the past ∼11 Ma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call