Abstract

Ostracods preserved in late Quaternary sediments of Wallywash Great Pond, a fresh coastal lake in SW Jamaica, record temporal variations in the strontium-isotope composition of lake water. Oxygen-isotope and Sr/Ca ratios in ostracods reveal temporal variations in the lake's hydrology, related to effective precipitation, and in its salinity related to varying marine-saline groundwater input from changes in relative sea level. Evaluation of isotopic and trace-element data indicates that the stratigraphic variations in 87Sr/ 86Sr ratios during the late Quaternary are best explained by climatically-controlled hydrological changes. During wetter periods, the lake's Sr budget was dominated by springwater input with relatively low 87Sr/ 86Sr ratio, whereas during drier times reduced springflow, possibly coupled with input of more-radiogenic Sr from other sources, such as sea-spray aerosols and perhaps Saharan dust, led to an increase in the Sr-isotope ratio of the lake water. Despite proximity of the lake to the sea and evidence for slight intrusion of marine saline groundwater in the past, however, the extent of marine input appears to have had limited influence on the lake's Sr-isotope ratios. Whereas the 87Sr/ 86Sr ratios cannot be used as a palaeosalinity proxy in this particular lake, they do provide valuable information about the mechanisms underlying hydrological change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.