Abstract

ABSTRACTThe strata-bound Pb–Zn deposits in western China share many similarities and are controversial in genesis. The large Uragen Pb–Zn deposit is located in the northwestern part of the Kashgar sag, southwest of Tarim Basin, Xinjiang, NW China. With the 980.9 Mt tons of Pb–Zn ores at 0.45%Pb and 2.61%Zn, it is the third largest known Pb–Zn deposits in China. The orebodies are stratiform and stratabound and are predominantly controlled by the Uragen syncline that has an E–W axial trend. Mineralization mostly occurs in sandstones and conglomerates of the Lower Cretaceous Kezilesu Group (K1kz), with a small amount in the Palaeocene limestone. The main ore types consist predominantly of disseminated ore with minor massive ore, veined ore, and breccia ore. The primary metal minerals are composed of sphalerite, galena, pyrite, and minor arsenopyrite and chalcopyrite, and the supergene metal minerals include smithsonite, cegamite, beudantite, jarosite, limonite, and minor hemimorphite. The gangue minerals are composed of dolomite, calcite, quartz, celestite, and gypsium. Our new Rb–Sr isotopic analyses on the separated sphalerite, galena yielded an isochron age of 55.1 ± 1.6 Ma, coeval to an isochron age of 55.4 ± 2.2 Ma by Sm–Nd isotopic data. This age is much younger than the youngest ore-bearing strata (E11, 65.5–61.7 Ma), arguing for an epigenetic origin. The calculated initial 87Sr/86Sr ratio of sulphides is 0.710322, which is much lower than those of basement formation, regional bituminous sandstone, and even the ore-bearing strata, but higher than the regional mantle-derived, alkaline volcanic rocks and marine carbonate. The calculated initial 143Nd/144Nd ratio of calcite and galena is 0.512081. These data suggest that the metals may be chiefly derived from crust, possibly from the minor contribution of mantle materials. Our new-age data, in combination with the previous data, suggest that there probably is a huge medium-low-temperature epigenetic stratabound Pb–Zn belt, which is possibly correlated to the India–Asia collision event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.