Abstract

Massive sedimentation of mats of the diatom Thalassiothrix longissima forming laminated diatom mat deposits (LDM) occurred intermittently in the equatorial Pacific throughout the Neogene from at least 15 to 4.8 m.y. ago. The background deposition was otherwise calcareous nannofossil diatom ooze (NO). Benthic foraminifera have been used to reconstruct the benthic environment of deposition and the role of both surface waters (as a source of food) and bottom waters (including their corrosivity) during LDM deposition. Three LDM events were studied: Site 844 (11.4 Ma, early Tortonian), Site 849 (4.8 Ma, early Zanclian and 6.6–6.8 Ma, early Messinian). A control section of NO spanning the 4.8 Ma event was studied from Site 851. In addition, the carbonate high NO immediately preceding the 4.8 Ma event was examined in Site 849. From the foraminiferal evidence it can be shown that the LDM was deposited under conditions of normal oxygenation because infaunal taxa are present throughout and there was an increase in epifaunal taxa such as Cibicides spp. However, there was a reduction in test size probably because only those smaller than 250 μm were able to move through the restricted sediment pore spaces caused by the diatom mat meshwork. The rate of accumulation of tests is highest in LDM interval and may reflect reduced predation from macrofaunal endobenthos. Among the epifaunal taxa, Nuttallides spp. show a decrease in abundance in the LDM and even immediately preceding it. This may be linked to a greater influence of corrosive AABW. Species known to feed opportunistically on phytodetritus ( Epistominella exigua and Alabaminella weddellensis) are common in both NO and LDM. The increased relative abundance of A. weddellensis in the LDM may be due to this species being smaller than E. exigua and better able to exploit the food resource within the restrictive mat meshwork. The foraminiferal results corroborate the previous interpretation that preservation of lamination in the LDM is due to the physical exclusion of macro endobenthos rather than oxygen depletion of the bottom waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call