Abstract

Aeolian sediments, a sensitive paleoclimatic and paleoenvironmental archive, are widely distributed over the Tibetan Plateau. In the northern slope of the Himalayan Mountains, however, the potential linkages between the aeolian processes, climatic changes, and the processes of desertification during the Holocene are not well understood. Here, we use an aeolian record from the northern slope of the middle Himalayan Mountains to investigate the influences of paleoclimate and paleoenvironment during the Early-Mid Holocene through the optically stimulated luminescence (OSL) dating, magnetic parameters, color variations, scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), and grain size parameters. Glacial sediments, weathering products, the surface of lack of vegetation cover, and alluvium and ancient lacustrine sediments had provided the sources for the aeolian sediments. The strengthened Indian monsoon intensity, dry and warm climate, and sparse vegetation cover accelerated the rapid expansion of desertification between ~11 and 9.6 ka B.P.. The Indian monsoon intensity weakened between 9.6 and 6.3 ka B.P., the warm and humid climate and increased vegetation cover decelerated the rapid expansion of desertification. Influenced by the weakened Indian monsoon intensity, warm and humid climate, increased vegetation cover, and limited sources, the desertification decelerated further between 6.3 and ~4.5 ka B.P.. Further, the interactions between the changes in monsoon intensity, different climatic conditions, sources of sediments, different vegetation cover recorded in aeolian sediments, and landforms are key to understanding climatic and environmental changes in the northern slope Himalayan Mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call