Abstract
We applied our method of pairwise shared genomic segment (pSGS) analysis to high-risk pedigrees identified from the Genetic Analysis Workshop 17 (GAW17) mini-exome sequencing data set. The original shared genomic segment method focused on identifying regions shared by all case subjects in a pedigree; thus it can be sensitive to sporadic cases. Our new method examines sharing among all pairs of case subjects in a high-risk pedigree and then uses the mean sharing as the test statistic; in addition, the significance is assessed empirically based on the pedigree structure and linkage disequilibrium pattern of the single-nucleotide polymorphisms. Using all GAW17 replicates, we identified 18 unilineal high-risk pedigrees that contained excess disease (p < 0.01) and at least 15 meioses between case subjects. Eighteen rare causal variants were polymorphic in this set of pedigrees. Based on a significance threshold of 0.001, 72.2% (13/18) of these pedigrees were successfully identified with at least one region that contains a true causal variant. The regions identified included 4 of the possible 18 polymorphic causal variants. On average, 1.1 true positives and 1.7 false positives were identified per pedigree. In conclusion, we have demonstrated the potential of our new pSGS method for localizing rare disease causal variants in common disease using high-risk pedigrees and exome sequence data.
Highlights
The original shared genomic segment (SGS) method is an analytical technique designed for finding rare disease variants in high-risk extended pedigrees [1,2]
We used the Genetic Analysis Workshop 17 (GAW17) mini-exome family data set to investigate the utility of a novel pairwise SGS method for detecting rare variants in a common trait
Our results, based on 18 extended high-risk pedigree replicates, suggest that as few as two pedigrees may offer greater than 90% power to detect at least one true causal rare variant
Summary
The original shared genomic segment (SGS) method is an analytical technique designed for finding rare disease variants in high-risk extended pedigrees [1,2]. It was designed for use with dense single-nucleotide polymorphism (SNP) genotyping to identify regions of identical-by-state (IBS) sharing between multiple distantly related case subjects. Identical-by-descent (IBD) sharing between distant relatives is increasingly improbable with genetic distance and is expected to be short. The identification of long, shared IBS regions among distant case subjects in a family may identify the area that is shared
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.