Abstract
A generalized Room square S( r, λ; v) is an r × r array such that every cell in the array contains a subset of a v-set V. This subset could of course be the empty set. The array has the property that every element of V is contained precisely once in every row and column and that any two distinct elements of V are contained in precisely λ common cells. In this paper we define pairwise orthogonal generalized Room squares and give a construction for these using finite projective geometries. This is another generalization of the concept of pairwise orthogonal latin squares. We use these orthogonal arrays to construct permutations having a constant Hamming distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.