Abstract
We developed a new approach for pairwise kinship analysis in forensic genetics based on chromosomal sharing between two individuals. Here, we defined “index of chromosome sharing” (ICS) calculated using 174,254 single nucleotide polymorphism (SNP) loci typed by SNP microarray and genetic length of the shared segments from the genotypes of two individuals. To investigate the expected ICS distributions from first- to fifth-degree relatives and unrelated pairs, we used computationally generated genotypes to consider the effect of linkage disequilibrium and recombination. The distributions were used for probabilistic evaluation of the pairwise kinship analysis, such as likelihood ratio (LR) or posterior probability, without allele frequencies and haplotype frequencies. Using our method, all actual sample pairs from volunteers showed significantly high LR values (i.e., ≥ 108); therefore, we can distinguish distant relationships (up to the fifth-degree) from unrelated pairs based on LR. Moreover, we can determine accurate degrees of kinship in up to third-degree relationships with a probability of > 80% using the criterion of posterior probability ≥ 0.90, even if the kinship of the pair is totally unpredictable. This approach greatly improves pairwise kinship analysis of distant relationships, specifically in cases involving identification of disaster victims or missing persons.
Highlights
Investigation of DNA polymorphisms, such as short tandem repeats (STRs) or single nucleotide polymorphisms (SNPs), can be used to identify familial relationships
In the index of chromosome sharing” (ICS) calculation, we investigate the genetic length of all identity by state (IBS) segments between the two individuals, and sum the genetic length of the IBS segments greater than a given threshold (Th)
We probabilistically evaluate the relationship of the pair by likelihood ratio (LR) or posterior probability calculated by the probability density of the ICS distribution in each relationship
Summary
Investigation of DNA polymorphisms, such as short tandem repeats (STRs) or single nucleotide polymorphisms (SNPs), can be used to identify familial relationships. In forensic genetics, unknown human remains, such as those used for disaster victim identification (DVI) or missing person identification (MPI), can be identified by kinship analysis between the unknown DNA sample and a reference DNA sample. People have fewer children and PLOS ONE | DOI:10.1371/journal.pone.0160287. Pairwise Kinship Analysis Using High-Density SNPs sample approval allowed us to use the genotype for only this study, because the SNP genotypes contain personal information
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.