Abstract

There are several ways of quantifying flood hazard. When the scale of the analysis is large, flood hazard simulation for an entire city becomes costly and complicated. The first part of this paper proposes utilizing experience and knowledge of local experts about flood characteristics in the area in order to come up with a first-level flood hazard and risk zoning maps, by implementing overlay operations in Arc GIS. In this step, the authors use the concept of pairwise comparison to eliminate the need for carrying out a complicated simulation to quantify flood hazard and risk. The process begins with identifying the main factors that contribute to flooding in a particular area. Pairwise comparison was used to elicit knowledge from local experts and assigned weights for each factor to reflect their relative importance toward flood hazard and risk. In the second part of this paper, the authors present a decision-making framework to support a flood risk response plan. Once the highest risk zones have been identified, a city can develop a risk response plan, for which this paper presents a decision-making framework to select an effective set of alternatives. The framework integrates tools from multicriteria decision-making, charrette design process to guide the pairwise elicitation, and a cost-effective analysis to include the limited budget constraint for any city. The theoretical framework uses the city of Addis Ababa for the first part of the paper. For the second part, the paper utilizes a hypothetical case of Addis Ababa and a mock city infrastructure department to illustrate the implementation of the framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call