Abstract

Computational assisted modeling was carried out to investigate the importance of specific residues in the binding site of scFv. In this study, scFv against HIV-1 epitope at the C-terminal on p17 (scFv anti-p17) was used as a candidate molecule for evaluating the method. The wild-type p17 and its nine natural mutants were docked with scFv anti-p17. Potential mean force (PMF) scores predicted the most favorable binding interaction, and the correlation agreed well with the corresponding activity data from the peptide based ELISA. In the interaction with solvent molecules, the 3D structures of scFv anti-p17 and selected peptide epitopes were further investigated by molecular dynamics (MDs) simulation with the AMBER 9 program. Post-processing of the snapshot at equilibrium was performed to evaluate the binding free energy and pairwise decomposition or residue-based energy calculation of complexes in solution using the Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) protocol. Our results demonstrated that the specific residues located in the complementary determining regions (CDRs) of scFv anti-p17, MET100, LYS101, ASN169, HIS228, and LEU229, play a crucial role in the effective binding interaction with the absolute relative decomposed energy more than 2.00kcal/mol in comparison to the original substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.