Abstract

Partitioning a data set and extracting hidden structure from the data arises in different application areas of pattern recognition, speech and image processing. Pairwise data clustering is a combinatorial optimization method for data grouping which extracts hidden structure from proximity data. We describe a deterministic annealing approach to pairwise clustering which shares the robustness properties of maximum entropy inference. The resulting Gibbs probability distributions are estimated by mean-field approximation. A new structure-preserving algorithm to cluster dissimilarity data and to simultaneously embed these data in a Euclidian vector space is discussed which can be used for dimensionality reduction and data visualization. The suggested embedding algorithm which outperforms conventional approaches has been implemented to analyze dissimilarity data from protein analysis and from linguistics. The algorithm for pairwise data clustering is used to segment textured images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.