Abstract

Data collected by scientists are increasingly in the form of trajectories or curves. Often these can be viewed as realizations of a composite process driven by both amplitude and time variation. We consider the situation in which functional variation is dominated by time variation, and develop a curve-synchronization method that uses every trajectory in the sample as a reference to obtain pairwise warping functions in the first step. These initial pairwise warping functions are then used to create improved estimators of the underlying individual warping functions in the second step. A truncated averaging process is used to obtain robust estimation of individual warping functions. The method compares well with other available time-synchronization approaches and is illustrated with Berkeley growth data and gene expression data for multiple sclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.