Abstract
We systematically study pairwise counter-monotonicity, an extremal notion of negative dependence. A stochastic representation and an invariance property are established for this dependence structure. We show that pairwise counter-monotonicity implies negative association, and it is equivalent to joint mix dependence if both are possible for the same marginal distributions. We find an intimate connection between pairwise counter-monotonicity and risk sharing problems for quantile agents. This result highlights the importance of this extremal negative dependence structure in optimal allocations for agents who are not risk averse in the classic sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.