Abstract
BackgroundThe reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance. The response of HIV protease to drugs often involves both primary mutations that directly inhibit the action of the drug, and a host of accessory resistance mutations that may occur far from the active site but may contribute to restoring the fitness or stability of the enzyme. Here we develop a probabilistic approach based on connected information that allows us to study residue, pair level and higher-order correlations within the same framework.ResultsWe apply our methodology to a database of approximately 13,000 sequences which have been annotated by the treatment history of the patients from which the samples were obtained. We show that including pair interactions is essential for agreement with the mutational data, since neglect of these interactions results in order-of-magnitude errors in the probabilities of the simultaneous occurence of many mutations. The magnitude of these pair correlations changes dramatically between sequences obtained from patients that were or were not exposed to drugs. Higher-order effects make a contribution of as much as 10% for residues taken three at a time, but increase to more than twice that for 10 to 15-residue groups. The sequence data is insufficient to determine the higher-order effects for larger groups. We find that higher-order interactions have a significant effect on the predicted frequencies of sequences with large numbers of mutations. While relatively rare, such sequences are more prevalent after multi-drug therapy. The relative importance of these higher-order interactions increases with the number of drugs the patient had been exposed to.ConclusionCorrelations are critical for the understanding of mutation patterns in HIV protease. Pair interactions have substantial qualitative effects, while higher-order interactions are individually smaller but may have a collective effect. Together they lead to correlations which could have an important impact on the dynamics of the evolution of cross-resistance, by allowing the virus to pass through otherwise unlikely mutational states. These findings also indicate that pairwise and possibly higher-order effects should be included in the models of protein evolution, instead of assuming that all residues mutate independently of one another.
Highlights
The reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance
Correlations are critical for the understanding of mutation patterns in HIV protease
We develop a hierarchy of probabilistic log-linear models [11] that can in principle describe residue interactions of arbitrary order, and use those to analyze HIV protease sequence data obtained from patient cohorts with varying protease inhibitor (PI) treatment histories
Summary
The reaction of HIV protease to inhibitor therapy is characterized by the emergence of complex mutational patterns which confer drug resistance. The response of HIV protease to drugs often involves both primary mutations that directly inhibit the action of the drug, and a host of accessory resistance mutations that may occur far from the active site but may contribute to restoring the fitness or stability of the enzyme. The patterns of mutations in protease are complex, involving multiple key primary mutations that inhibit the action of drugs and a host of accessory mutations that can modulate the enzyme's stability or activity or otherwise enhance the fitness of the virus. Recognition that the observed mutations may be involved in higher-order interactions has led to a few studies in which correlated pairs of mutations are grouped using tools such as multidimensional scaling [3,6], Bayesian networks [8], networks defined by patterns of conditional selection pressure [5], and clustering [9,10]. The underlying assumption is that understanding higher-order interactions is important for a complete understanding of the evolution of resistance in HIV protease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.