Abstract

We study vortex zero-energy bound states in presence of pairing between low-energy Dirac fermions on the surface of a topological insulator. The pairing symmetries considered include the $s$-wave, $p$-wave, and, in particular, the mixed-parity symmetry, which arises in absence of the inversion symmetry on the surface. The zero mode is analyzed within the generalized Jackiw-Rossi-Dirac Hamiltonian that contains a momentum-dependent mass term, and includes the effects of the electromagnetic gauge field and the Zeeman coupling as well. At a finite chemical potential, as long as the spectrum without the vortex is fully gapped, the presence of a single Fermi surface with a definite helicity always leads to one Majorana zero mode, in which both electron's spin projections participate. In particular, the critical effects of the Zeeman coupling on the zero mode are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.