Abstract
Motivated by the recent experiment on bosonic mixtures of atoms and molecules, we investigate pairing superfluid–insulator (SI) transition for bosonic mixtures of atoms and molecules in a one-dimensional optical lattice, which is described by an extended Bose–Hubbard model with atom–molecule conservation (AMC). It is found that AMC can induce an extra pair–superfluid phase though the system does not demonstrate pair-hopping. In particular, the system may undergo several pairing SI or insulator–superfluid transitions as the detuning from the Feshbach resonance is varied from negative to positive, and the larger positive detuning can bifurcate the pair–superfluid phases into mixed superfluid phases consisting of single-atomic and pair-atomic superfluid. The calculation of the second-order Rényi entropy reveals that the discontinuity in its first-order derivative corresponds to the phase boundary of the pairing SI transition. This means that the residual entanglement in our mean-field treatment can be used to efficiently capture the signature of the pairing SI transition induced by AMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.