Abstract

We theoretically consider the superconductivity of the topological half-Heusler semimetals YPtBi and LuPtBi. We show that pairing occurs between j=3/2 fermion states, which leads to qualitative differences from the conventional theory of pairing between j=1/2 states. In particular, this permits Cooper pairs with quintet or septet total angular momentum, in addition to the usual singlet and triplet states. Purely on-site interactions can generate s-wave quintet time-reversal symmetry-breaking states with topologically nontrivial point or line nodes. These local s-wave quintet pairs reveal themselves as d-wave states in momentum space. Furthermore, due to the broken inversion symmetry in these materials, the s-wave singlet state can mix with a p-wave septet state, again with topologically stable line nodes. Our analysis lays the foundation for understanding the unconventional superconductivity of the half-Heuslers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.