Abstract

We study non-equilibrium dynamics of ultracold two-component Fermi gases in low-dimensional geometries after the interactions are quenched from weakly interacting to strongly interacting regime. We develop a T-matrix formalism that takes into account the interplay between Pauli blocking and tight confinement in low-dimensional geometries. We employ our formalism to study the formation of molecules in quasi-two-dimensional Fermi gases near Feshbach resonance and show that the rate at which molecules form depends strongly on the transverse confinement. Furthermore, Pauli blocking gives rise to a sizable correction to the binding energy of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.