Abstract

The pairing heap has recently been introduced as a new data structure for priority queues. Pairing heaps are extremely simple to implement and seem to be very efficient in practice, but they are difficult to analyze theoretically, and open problems remain. It has been conjectured that they achieve the same amortized time bounds as Fibonacci heaps, namely, O (log n ) time for delete and delete_min and O(1) for all other operations, where n is the size of the priority queue at the time of the operation. We provide empirical evidence that supports this conjecture. The most promising algorithm in our simulations is a new variant of the twopass method, called auxiliary twopass. We prove that, assuming no decrease_key operations are performed, it achieves the same amortized time bounds as Fibonacci heaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.