Abstract

The pairing corrections, the single particle occupation numbers, are investigated within density-dependent delta interaction formalism for pairing residual interactions. The potential barrier is computed in the framework of the macroscopic-microscopic model. The microscopic part is based on the Woods-Saxon two center shell model. The alpha-decay of a superheavy element is treated, by paying a special attention to the region of the scission configurations. The sequence of nuclear shapes follows the superasymmetric fission path for alpha decay. It was found that the pairing gaps of the states that reach asymptotically the potential well of the alpha particle have large values at scission but become zero after scission. The 1s1/2 single particle levels of the nascent alpha particle are fully occupied while the superior levels are empties in the scission region and remains in the same states during the penetration of the Coulomb barrier. The projection of the numbers of particle on the two fragments are obtained naturally. At scission, the nascent alpha particle forms a very bound cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.